From 1 - 10 / 123
  • The horizontal grid spacing for MESONH is here 2 km. The domain size is 192 x 180 gridpoints covering the COPS area. The vertical grid has 50 levels up to 20 km with a grid length varying from 60 m close to the surface to 600 m at high altitude. The model was integrated forward for 30 hours every day starting from 00 UTC ECMWF analysis and keeping outputs every 15 minutes. More information is available at http://mesonh.aero.obs-mip.fr/mesonh/cops/ Grid description: CDOM: xfirst: 6.0 yfirst: 47.0 xsize: 251.0 ysize: 151.0 xinc: 0.02 yinc: 0.02 xnpole: 0.0 ynpole: 0.0

  • Accurate initialization of the water vapor field is important for NWP. With recent advances in Global Positioning System (GPS) atmospheric remote sensing, ground-based GPS receivers have become an important instrument that can provide high resolution water vapor measurements operationally at low cost with an accuracy of a few millimeters. The system can operate in all weather conditions. During the COPS campaign, a dense network of GPS receivers was installed. This data has been assimilated in real-time into the MM5 4DVAR system to improve quantitative precipitation forecasts and process understanding. Operational forecasts initialized with 4DVAR and corresponding CONTROL forecasts, initialized only by the ECMWF forecast,ran the whole COPS/D-PHASE period to provide a basis for future statistical investigations. This experiment contains only the innermost domain (2km) of the forecast initialized with the operational ECMWF forecast only (CONTROL). The corresponding 4DVAR forecast can be found as experiment dphase_mm5_2_4d. Assimilation run: - 18 km horizontal resolution - 36 level up tp 100 hPa - 64x70 grid points - MM5 3.4 (4DVAR version) - Kuo convection scheme - MRF PBL scheme - Simple radiation - Warm cloud microphysics - 3 hour assimilation window Free forecast run: only innermost 2km domain (CDOM) was archived) - Triple 2-way nested 24h forecast (18, 6, 2 km resolution) - 36 level up to 100 hPa - 64x70 points (18 km), 106x109 points (6 km), 169x184 points (2 km) - MM5 3.7.4 - Kain Fritsch 2 cumulus (no parameterization in the 2 km domain) - Reisner2 cloud microphysics - RRTM LW + Dudhia SW radiation - MRF PBL scheme - 5 layer soil model Note: here the datasets differ in time resolution (DDOM:1h, CDOM 15min) not in region. Grid description:"CDOM"+"DDOM":xinc/yinc:2.0 xnpole/ynpole:0.0 xfirst:6.0205 yfirst:47.0167 xsize:184.0 ysize:169.0

  • Aladin-Austria daily numerical weather forecast. It is a hydrostatical model, where the equations are solved by transformation to the spectral form. For the microphysics a Kessler-Typ scheme is used. Two runs are conducted each day at 00:00, 12:00 (72 hours forecast range). The horizontal resolution amounts to 9.6 km, on 45 pressure levels in the vertical. The domain spans Central Europe. Grid description: quadratic grid, Lambert Projection DDOM: xfirst: 2.53 yfirst: 42.94 xsize: 142.0 ysize: 102.0 xinc: 0.11 yinc: 0.07 xnpole: 0.0 ynpole: 0.0

  • COSMO-ME is the high-resolution operational implementation of COSMO Model at the National Meteorological Service of Italy. The model domain covers most of continental Europe and the entire Mediterranean Basin. The horizontal resolution is 7km (0.0625deg) with 40 vertical levels. The model is routinely run on the ECMWF super-computer once a day at 00Z with hourly output. The initial conditions are interpolated from the Italian Met. Service 3DVAR-FGAT data assimilation system. The boundary conditions (BC) are provided by IFS global model. Grid description: DDOM: xfirst: -5.875 yfirst: -14.312 xsize: 194.0 ysize: 112.0 xinc: 0.0625 yinc: 0.0625 xnpole: -170.0 ynpole: 32.5

  • LARSIM (LARSIM=LArge Area Runoff Simulation Model BW= Baden-Wuerttemberg) is described in "Freiburger Schriften zur Hydrologie", Band 22. 2006 (Ludwig, K.; Bremicker, M.: The water Balance Model LARSIM) The calculated results from LARSIM for the gauges Murg at Rotenfels and Kinzig at Schwaibach were handed over. The results are calcultaed in operational mode of the flood forecasting centre Karlsruhe (HVZ). The forecasts were corrected with ARIMA (0,1,0), i.e. the forecasted discharges were shifted with a constant amount, so, that the first forecast value attaches directly to the last measured value. During low water periods, the forecast is adapted to the average value of the last 24 h of the measured values. The forecasts were calculated for 72 hours. The runs driven by the DWD forecast LMK takes the LMK (new name: COSMO-DE) for the first 21 hours and then the LME-forecast. The runs called LME take only the LME (new name: COSMO-EU) forecast into accuont. For the period up to the forecast time measured values were used. The model uses precipitation, temperature, wind velocity, dew point or rel. humidity and the solar radiation. The measurement network uses the stations of the German Weatherservice DWD, the stations of the federal state Baden-Wuerttemberg (called "LUBW Luft" and "LUBW Ombro") and stations of third parties. The measurement network is very dense, but the equipement of the different stations may be dissimilar. You can see the network of the precipitation stations at http://www.hvz.baden-wuerttemberg.de/ -> Niederschlag -> Stationskarte. The forecasts were performed by the Flood Forecasting Centre Karlsruhe (HVZ) with its operational model "Oberrheinzf" (for Oberrheinzufluesse = tributaries of the river Rhine). The HVZ is part of the "Landesanstalt fuer Umwelt, Messungen und Naturschutz Baden-Wuerttemberg" (LUBW)". The model covers the region: 7°42' / 48°04' und 8°33' / 49°02'

  • lami7 stands for 'Limited Area Model Italy' which is the Italian implementation of COSMO Model, run with a 7 km grid interval. COSMO model in lami7 suite is run operationally twice a day with a 7 km grid interval; it is initialised at 00 and 12 UTC with an own continuous assimilation cycle based on the nudging technique; the boundary conditions are provided by ECMWF IFS model; the integration domain ranges approximately from 0 deg E to 23 deg E and from 33 deg N to 52 deg N and the integration time range is 72 hours. The model is run at Cineca computing centre (http://www.cineca.it) on an IBM Power5 platform and in backup at ARPA-SIM (http://www.arpa.emr.it/sim/) on a Intel X86-64 Linux Cluster. Grid description: If given, the grid increments contained in the grib file have to be ignored since the precision for those parameters in GRIB1 format is not enough to represent the true value. DDOM: xfirst: -5.0 yfirst: -15.5 xsize: 186.0 ysize: 136.0 xinc: 0.0625 yinc: 0.0625 xnpole: 32.5 ynpole: -170.0

  • The goal of the experiment is to drive FEST, a rainfall-runoff distributed model with continuous soil moisture account, with ensemble forecasts from COSMO-LEPS (CLEPS) and with forecasts from ISACMOL2. The application domain is the Toce-Ticino and Maggia watershed. Hydrograph simulations and alerts are provided for Candoglia (Toce), Solduno (Maggia) and Bellinzona (Ticino). The runs were provided by Politecnico di Milano (PoliMi), Italy.

  • Forecast data are modelled by a 30-km parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the National Agency for Environmental Protection and Technical Services (APAT) at Rome (Italy). This version, referred as 30-km QBOLAM model, is the driving model of the 11-km QBOLAM model which is described in the dphase_qbolam11 experiment. For DPHASE project, forecast data are provided over a subdomain (refered as DDOM) of the original domain (which covers the entire Mediterranean Basin). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Initial and boundary conditions for a 60-h QBOLAM33 forecast are derived from the European Centre for Medium-Range Weather Forecasts analysis and forecast issued at 1200 UTC on the previous day. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. DDOM: xfirst: -10.2 yfirst: 4.2 xsize: 54.0 ysize: 40.0 xinc: 0.3 yinc: 0.3 xnpole: -167.5 ynpole: 51.5

  • The horizontal grid spacing is here 8 km. The domain size is 160 x 108 gridpoints covering the MAP D-PHASE domain. The vertical grid has 50 levels up to 20 km with a grid length varying from 60 m close to the surface to 600 m at high altitude. The model was integrated forward for 30 hours every day starting from 00 UTC ECMWF analysis and keeping outputs every 1 hour. More information is available at http://mesonh.aero.obs-mip.fr/mesonh/cops/ Grid description: DDOM: xfirst: 2.0 yfirst: 43.0 xsize: 201.0 ysize: 88.0 xinc: 0.08 yinc: 0.08 xnpole: 0.0 ynpole: 0.0

  • For Map-D-PHASE the Canadian Meterological Centre (CMC) is running the Global Environmental Multiscale (GEM) model in limited-area mode. The model is run once-daily directly from operational GEM meso-global forecast data (grid spacing of 33 km). A pair of domains are used for the project with horizontal grid spacings of 15 km and 2.5 km. This inner (high resolution) grid is tightly centered on the MAP D-PHASE project region and is initialized at 0600 UTC from the CMCGEML run. Boundary conditions for the high resolution domain are updated at 15 minute intervals from the low resolution model output. The forecast timestep is 60 seconds and data is available at 15 minute intervals. No regional analysis or data assimilation cycle is undertaken during this project. All observational data will therefore be ingested only indrectly in the regional setup through the outer grid initialization and hourly boundary updates from the meso-global model. The GEM model is a semi-implicit, semi-Lagrangian, two time-level, non-hydrostatic model that runs in a wide variety of configurations. An updated version (v3.3.0) of the GEM model is being used for the MAP D-PHASE project in preparation for the Vancouver 2010 Olympic Games project. This version takes advantage of recent developments designed to enhance the quality of guidance over regions of steeply-sloping orography, including the addition of a 6-category bulk microphysics scheme and time-varying orography over the initialization period. For more information on -the GEM model dynamics: see Cote et al (1998) [Mon. Wea. Rev.]. -the model physics package: contact Recherche en Prevision Numerique for the related technical document by Mailhot. -the model's microphysics scheme: see Milbrandt and Yau (2007) [Mon. Wea. Rev.]. Grid description: CDOM and DDOM:xinc 0.03 yinc:0.02 xnpole/ynpole:0.0 CDOM:xfirst:6.0 yfirst:47.0 xsize:168.0 ysize:151.0 DDOM:xfirst:2.0 yfirst:43.0 xsize:535.0 ysize:351.0

Barrierefreiheit | Datenschutz | Impressum